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Abstract: The development of an objective and rapid method that can be used for the early
diagnosis of gastric cancer has important clinical application value. In this study, the fluorescence
hyperspectral imaging technique was used to acquire fluorescence spectral images. Deep learning
combined with spectral-spatial classification methods based on 120 fresh tissues samples that had
a confirmed diagnosis by histopathological examinations was used to automatically identify and
extract the “spectral+ spatial” features to construct an early diagnosis model of gastric cancer.
The model results showed that the overall accuracy for the nonprecancerous lesion, precancerous
lesion, and gastric cancer groups was 96.5% with specificities of 96.0%, 97.3%, and 96.7% and
sensitivities of 97.0%, 96.3%, and 96.6%, respectively. Therefore, the proposed method can
increase the diagnostic accuracy and is expected to be a new method for the early diagnosis of
gastric cancer.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Gastric cancer (GC) is one of the common malignancies that originate from epithelial cells on
the gastric mucosa. According to global data, GC is the fourth most common malignancy in the
world and the second leading cause of cancer-related deaths [1]. The occurrence and development
of GC are complicated and affected by multiple factors such as environment and heredity, and the
influence of these factors on the occurrence of GC has not been fully elucidated. The five-year
survival rate of advanced GC is still lower than 30% even after the comprehensive treatment of
surgery, chemotherapy, and radiotherapy [2], while the five-year survival rate after the treatment
of early GC can be more than 90%, even reaching the cure effect [3]. Therefore, early diagnosis
of GC is very important.
The occurrence and development of GC is a complex process of multistage, multistep, and

multiple mechanisms. There are a series of intermediate stages (including the precancerous
state). At present, the more recognized pattern of human GC was proposed by Correa [4]:
“normal gastric mucosa - chronic non-atrophic gastritis - atrophic gastritis - intestinal metaplasia
- dysplasia - gastric cancer.” The diseases of atrophic gastritis (AG) and intestinal metaplasia
(IM) are considered to be precancerous lesions that are highly associated with GC [5]. AG and
IM have a greater risk of developing into GC if not treated in time. Their early detection and
timely treatment have important practical significance for the prevention and treatment of GC.
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At present, there are various methods for the early diagnosis of GC, including endoscopic diag-
nosis [general endoscopy, endoscopic ultrasonography, magnifying endoscopy, chromoendoscopy
(CE), etc.] [6–9], histopathological diagnosis [10], imaging diagnosis (X-ray examination,
computed tomography examination, nuclear magnetic resonance, etc.) [11–13], and tumor
marker diagnosis (pepsinogen, gastrin 17, GC markers, etc.) [14–17]. However, these diagnostic
methods still have the following shortcomings: the endoscopic diagnosis method is subjective and
easy to miss, histopathological diagnosis requires invasive examination and time-consuming and
analytical procedures that require specialized knowledge and training, and the imaging diagnosis
method cannot effectively diagnose early lesions. Tumor markers are mostly used to evaluate the
therapeutic effect of GC, but there is still no effective tumor marker for GC [18–21]. Therefore,
an objective, rapid, and accurate method for the early diagnosis of GC should be developed.

Fluorescence hyperspectral imaging (FHSI) technology can be used to obtain the spatial image
information and spectral information of samples, which makes it possible to perform spectral
analysis on all pixel regions of the space, Therefore, it can realize the functions that cannot be
directly achieved by traditional optical imaging and the spectral method. This method can detect
some physiological and pathological changes of biological tissues through its spectral features.
N. Bedard et al. found that when excited with blue light, normal tissue emits a pale blue/green
autofluorescence while dysplastic and cancerous regions with reduced autofluorescence appear
dark-brown [22]. Besides, this method can establish a more elaborate model for the early
diagnosis of some diseases through its “spatial+ spectral” features [23,24]. G. Lu et al. [25]
proved that the spectral-spatial classification method can obtain better classification results than
the traditional spectral classification and spatial classification methods [26,27].
Because spectral classification utilizes only the spectral features of a single pixel, the spatial

relationship of adjacent pixels is ignored. Spatial classification is limited to image spatial
information in a certain spectral band and ignores the information of the composition of the
material provided by the spectrum. To improve the interpretation and classification ability
of hyperspectral data, it is necessary to integrate spatial and spectral information in the low-
dimensional space through a spectral-spatial classification method.

In addition, hyperspectral images contain rich high-dimensional data. Owing to the limitations
of manually extracting features by using traditional machine learning algorithms (decision tree,
random forest, and support vector machine), it is impossible to learn representative feature
representations from these high-dimensional data. A solution to the problem of gradient
disappearance in deep network training was proposed by Hiton et al. [28] in 2006: “unsupervised
training initialization of weights+ fine-tuning of supervised training” which provides an effective
solution for deep learning. AlexNet, a deep learning network was built by the Hiton team in
2012, has made a major breakthrough in the field of image recognition, and made deep learning
become one of the current research hotspots [29,30]. Hierarchical feature representations can be
automatically learned from existing data by using the deep learning method, which can overcome
the limitations of manually extracted features.

At present, deep learning has been widely reported in the field of medical image analysis. Ma
et al. [31] combined hyperspectral imaging with convolutional neural networks (CNNs) for the
identification of normal and head and neck cancer tissues, and achieved an accuracy of 91.36%.
Levin [32] published a paper in Lancet Respiratory Medicine in which lung CT images were
combined with deep convolutional neural networks. He found that this can accurately assess
pulmonary fibrosis with an accuracy of 95%. Byrne et al. [33] employed narrow-band imaging
combined with a CNN for the identification of small colon polyps (adenomas and hyperplastic
polyps) and found that the accuracy was 94%. Wang et al. [34] employed two-dimensional
shear-wave elastography combined with a CNN to assess the stage of hepatic fibrosis and achieved
an accuracy of above 95%. However, the application of FHSI combined with deep learning in
the early diagnosis of GC has not been reported.
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In view of the wealth of information available about FHSI and the biochemical complexity of
tumor development, in this paper, a modeling method based on deep learning combined with the
spectral-spatial classification method is proposed for fluorescence hyperspectral images. This
method uses the entire spectrum of each pixel and the information from its neighborhood to
build the model. This is applied to the early diagnosis of GC to provide an objective, rapid, and
accurate diagnostic method for the early diagnosis of GC.

2. Materials and methods

2.1. Experiment equipment and image acquisition

In this experiment, an FHSI system designed and built by the Department of Optoelectronic
Engineering at Jinan University was used. The core components included an ultraviolet xenon
light source with a central wavelength of 361 nm and its interference filter, a liquid-crystal tunable
filter (LCTF, CRI Inc., VariSpec VIS, Connecticut City, United States) useful for narrow-band
filtering within the 400-720 nm range, a 16-bit complementary metal-oxide semiconductor
(CMOS, Hamamatsu Inc., Hamamatsu City, Japan), a dichroic mirror with a cutoff wavelength
of 425 nm (Thorlabs Inc., New Jersey City, United States) that can separate laser light, and a
signal light. The system also contains a lens set, video capture card, and computer. Figure 1
shows the FHSI system.

Fig. 1. Fluorescence hyperspectral imaging system.

Spectral cube acquisition: The sample was placed on a slide. The microscope was adjusted at
low magnification (5×) until a clear image could be seen. Following that, a 361 nm ultraviolet
laser was used for fluorescence emission, and one image frame was acquired at every 2 nm
interval in the 450-680 nm range. In total, 116 fluorescence spectral images were acquired for
each patient (experiment temperature: 25± 1 °C, humidity: 46% relative humidity).
The large network model and parameters in a convolutional neural network (CNN) require a

large amount of internal memory and computing resources during the training phase, and has
higher requirements for the computing platform. The main advantage of GPU over CPU is the
parallel computing capability, thus reducing the training time, and we constructed a relevant
hardware platform to solve the problem of high-speed calculations by selecting a suitable graphics
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processing unit (GPU).The specific information of the computing platform is as follows: CPU:
Intel Core i5-8500, base frequency: 3 GHz, GPU: NVIDIA chip, GTX1080Ti motherboard,
11-GB GDDR5 memory with 3584 stream processing units, internal memory: 16-GB DDR4
RECC internal memory, power supply: Jetsoft 600 W, and motherboard: Gigabyte Z270 HD3.

All data preprocessing was performed using our open-source SIproc software, implemented in
C++ and CUDA. Training and testing were performed in Python using open-source software
packages. TensorFlow, which leveraged the TFlearn interface, was used to design and implement
CNNs.

2.2. Experimental samples

The fresh gastric mucosal tissues used in this study were obtained from the Departments of
Gastroenterology at the People’s Liberation Army 74th Group Army Hospital and Zhujiang
Hospital of Southern Medical University. There were 120 patients: 62 male and 58 female. The
mean age was 55 years. Among these samples, there were 53 cases with nonprecancerous lesions
(including normal gastric tissue and nonatrophic gastritis), 35 cases with precancerous lesions
(AG accompanied by IM), and 32 cases with GC. Other pathological types were excluded.

During gastroscopic examination, conventional disposable biopsy forceps (tip width of 6 mm)
were used. Two adjacent tissue-sample blocks of apparent lesions were collected. One block was
used for histopathological diagnosis, while the other was not treated but placed inside a cryovial
and immediately stored in a liquid nitrogen tank. The time interval from tissue sample collection
to spectral image detection was 1 week. All samples were operated by endoscopists with five or
more years of experience, and diagnoses were made by pathologists with eight or more years of
experience. Informed consent was obtained from patients for the collection of gastric mucosal
tissue samples. This process conformed to ethical requirements, and the patients were informed
of the situation.

2.3. ResNet

The residual network (ResNet) was proposed by Kaiming He [35] et al. in 2015. Compared with
the classic CNN architecture, ResNet’s main feature is the introduction of residual connectivity,
which can solve its performance degradation problem when training a very deep network [36,37].
At present, a large number of ResNet-based works have been proposed and successfully applied to
different fields such as natural language processing [38], speech recognition [39,40], and remote
sensing image classification [41]. The application of ResNet has also improved the performance
of the corresponding models.

In general, a deep residual network consists of a set of residual blocks, each containing several
stacked convolutional layers [with a modified linear unit (ReLU) and a batch-normalized layer
attached as a convolutional layer]. A residual block with an identity map can be expressed as
Eq. (1).

hl+1 = Relu(hl + F(hl,wl)) (1)

where hl and hl+1 are the input and output of the first residual block, respectively; Relu(.) is
rectified linear unit function; F is the residual mapping function; and ωl is the parameter of the
residual learning unit. Specifically, when the channel (size) of F(hl,ωl) and hl are not equal,
a linear projection is usually applied to match the size, so Eq. (1) can be further converted to
Eq. (2).

hl+1 = Relu(ϕ(hl) + F(hl,wl)) (2)

The Resnet34 framework was built in this paper and is shown in Fig. 2. A basic residual block is
shown in Fig. 2(B). Figure 2(A) shows a 34-layer plain network, and Fig. 2(B) shows a 34-layer
residual network. Compared with the plain network, the residual network has a shortcut that
directly implements the direct connection route of the unit map, similar to a “short circuit.”
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Through experiments, this structure with a shortcut can effectively solve the problem of gradient
disappearance.

Fig. 2. Schematic diagram of residual network

2.4. Assessment of model parameters

During the construction of the CNN diagnosis model, the accuracy, loss function threshold,
specificity, and sensitivity are important assessment markers. The closer the accuracy, specificity,
and sensitivity are to 1, the better the diagnosis results of the constructed model. Equations (3)–(5)
show the formulas for the different parameters.

Accuracy =
ncorrect

ntotal
(3)

Loss = NLL(W, b) = −
|Y |∑
i=1

logY(i) (4)

TPR =
TP

TP + FN
(5)

FPR =
TN

FP + TN
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In Eq. (5), TPR represents the sensitivity, FPR represents the specificity, TP represents the
number of positive samples from the validation set that were correctly classified by the model,
FN represents the number of positive samples from the validation set that were wrongly classified
by the model, FP represents the number of negative samples from the validation set that were
wrongly classified by the model, and TN represents the number of negative samples from the
validation set that were correctly classified by the model.

3. Results

3.1. Fluorescence spectra analysis

3.1.1. Spectral acquisition and normalization

Each sample was detected by an FHSI system to obtain a spectral cube consisting of 116 frames
of 256-order grayscale images. Figure 3(A) is a fluorescence image of a gastric mucosal tissue
sample at a peak of 608 nm (normal, AG, IM, GC). A binary image is shown in Fig. 3(B). The
spectral curve of the gastric tissue is drawn by randomly selecting 100 pixels from the spectral
cube. The normalized spectra of normal, AG, IM, and GC are shown in Fig. 3(C).

Fig. 3. Schematic diagram of spectral acquisition: (A) original fluorescence image; (B)
binarized image; and (C) average spectrum by normalization of each tissue.

3.1.2. Original spectral analysis

Human tissue autofluorescence groups are listed in Table 1 [42]. The average spectra of
normal, AG, IM, and GC are shown in Fig. 4. The error bars in Fig. 4(A) represent the
difference in fluorescence intensity between different pixel points. In Fig. 4(B), 496 nm is
the fluorescent characteristic peak of the pyridoxal phosphate “Schiff” base, 546 nm is the
fluorescent characteristic peak of phospholipid, and 670 nm is the fluorescent characteristic peak
of hematoporphyrin. The fluorescence intensity of normal gastric mucosa at 496 nm was weaker
than that of the lesion, indicating that the metabolic abnormality of the pyridoxal phosphate
“Schiff” base was accompanied by lesions. The fluorescence intensity of normal gastric mucosa
and AG at 546 nm and 670 nm was stronger than that of IM and GC, indicating that gastric
mucosa is accompanied by an abnormal metabolism of phospholipids during carcinogenesis.
In addition, the fluorescence intensity of IM and GC were relatively close, indicating that the
intestinal epithelial metaplasia is similar to the tissue fluorescent substance composition of GC.
This also indicates that IM has a greater risk of canceration.

3.1.3. Second derivative spectral analysis

In this study, gastric mucosal tissue samples were divided into three groups: nonprecancerous
lesion group, precancerous lesion group, and gastric adenocarcinoma group. Figure 5(A) shows
the second derivative spectrum of the nonprecancerous lesion group, precancerous lesion group,
and GC group. The value of 466 nm is a hydrophobic subunit ubiquinone reductase (NADPH).
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Fig. 4. Average spectrum of normal, atrophic gastritis, intestinal metaplasia, and gastric
cancer: (A) average spectrum of each tissue with error bars and (B) average spectral intensity
of each tissue at 496 nm, 546 nm, and 670 nm.

Table 1. Autofluorescence groups, excitation wavelengths, and emission wavelengths of human
tissue components.

Endogenous fluorescent substance Biological component Autofluorescence
excitation/emission

Aromatic amino acid Functional protein (240-280 nm) / (280-350 nm)

Cytokeratin Intracellular fibrin (280-325 nm) / (495-525 nm)

Collagen, elastin Extracellular protein fiber (350-420 nm) / (420-510 nm)

Riboflavin Coenzyme of key enzymes in
redox reactions

(330-380 nm) / (440, 462 nm)

Hydrophobic subunit ubiquinone
reductase

Coenzyme of key enzymes in
redox reactions

(350-370nm) / (480, 540 nm)

fatty acid Lipid accumulation (330-350 nm) / (470-480 nm)

Vitamin A/Vitamin B6 Carotenoid/pyridoxal phosphate
“Schiff” base

(370-380 nm) / (490-510 nm)

Protoporphyrin IX and porphyrin
derivatives

Protein (apolipoprotein) repair
group

(405 nm) / (630-700 nm)

Lipofuscin Mixed (protein, lipid, vitamin a) (UV, 400-500 nm) / (480-700 nm)

Lecithin Cell membrane main component (436 nm) / (540 nm, 560 nm)
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The intensity of NADPH in the GC group is significantly lower than that in the nonprecancerous
lesion group and the precancerous lesion group and may be caused by abnormal NADPH
metabolism in GC tissues. The value of 546 nm is a phospholipid in the body lipid, and the
intensity of phospholipids in the GC group is significantly greater than that in the nonprecancerous
lesion group and the precancerous lesion group. Phospholipids are the main component of the
cell membrane and may be caused by an abnormal phospholipid metabolism in the cell membrane
of the GC group. The error bars in Fig. 5(B) represent the difference in fluorescence intensity
between different individuals.

Fig. 5. Second-derivative spectra of nonprecancerous lesions, precancerous lesions, and
gastric cancer: (A) average spectrum of second derivative and (B) average spectrum of
second-derivative with error bars.

3.2. ResNet34 model

3.2.1. Spatiospectral preprocessing

A spectral cube was obtained after acquiring every sample by the spectral imaging system. This
cube was composed of images from 116 frames and 256 grayscale levels. First, the region of
the target image (size: 200 × 200) was extracted. Following that, 10 × 10 pixels were used to
form a 10 × 10 × 100-long one-dimensional vector in 100 consecutive wave bands, which was
converted to a 100 × 100 two-dimensional matrix. This step was traversed across the entire image
to obtain a series of 400 two-dimensional matrix images containing spatial-spectral information.
Figure 6 shows the procedure of spatial-spectral preprocessing. Images of nonprecancerous
lesions, precancerous lesions, and GC are shown in Fig. 7. Case and picture information of
nonprecancerous lesion group, precancerous lesion group, and gastric cancer group are shown in
Table 2.

Table 2. Case and picture information of nonprecancerous lesion group, precancerous lesion
group, and gastric cancer group.

Grouping of observations
non-precancerous
lesions group

precancerous lesions
group gastric cancer group total

Number of cases 53 35 32 120

Original fluorescent image/picture 53×100 35×100 32×100 12000

Image of spatial-spectral/pictue 53×400 35×400 32×400 48000
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Fig. 6. Schematic diagram of spatiospectral preprocessing.

Fig. 7. Image of nonprecancerous lesions, precancerous lesions, and gastric cancer:
Figs.7(A)–(C) histopathological image; Figs.7(D)–(F) original fluorescent image; and
Figs.7(G)–(I) spatiospectral image.
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3.2.2. Sample set division

A sample set division of spatiospectral images is listed in Table 3. The ResNet34 model randomly
selects the joint spatial-spectral preprocessed images in a 3:1:1 ratio for the training set (28,800
images), validation set (9600 images), and test set (9600 images).

Table 3. Sample set division of spatiospectral image.

Sample set non-precancerous lesions group precancerous lesions group gastric cancer group total

training set 12720 8400 7680 28800

Validation set 4240 2800 2560 9600

test set 4240 2800 2560 9600

3.2.3. Structure framework of ResNet34

In this study, hyperspectral image data characteristics and classification requirements were used to
design ResNet34. This study is a multiple classification of the problems of the nonprecancerous
lesion, precancerous lesion, and GC groups. Figure 8 shows the entire framework. Figure 8(A)
shows a spatiospectral image; (B) contains one convolutional layer and four residual blocks,
where depth feature extraction is carried out to extract the features of the middle convolution
layer and obtain the feature expression by mean pooling; and (C) shows a softmax multiclass
classification, which outputs the category information for I (nonprecancerous lesion group), II
(precancerous lesion group), and III (GC group).

Fig. 8. Schematic diagram of Resnet34 for early diagnosis of gastric cancer: (A) image
dataset by using spatiospectral preprocessing; (B) convolutional layer and residual module;
and (C) fully connected layer and softmax multiclassifier.

3.2.4. Result of ResNet34 model

The results of 200 iterations of the ResNet34 model are shown in Fig. 9. As shown in Fig. 9(A),
the accuracy of the training set and the validation set are not much different when the number of
iterations is within 0-18. After the number of iterations is greater than 18, the accuracy of the
training set is significantly higher than that of the validation set. The accuracy of the training set
and the validation set constantly increase with an increase in the iteration times when the number
of iterations is within 0-40, and the accuracy gradually stabilizes after the number of iterations is
higher than 40.

As shown in Fig. 9(B), the thresholds of the loss function in the training set and the validation
set are not much different when the number of iterations is within 0-14. After the number of
iterations is greater than 14, the thresholds of the loss function in the training set are significantly
smaller than those of the validation set. The thresholds of the loss function in the training set
and the validation set are constantly reduced with an increase in the iteration times when the
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Fig. 9. Modeling results of Resnet34: (A) accuracy rate varies with number of iterations
and (B) curve of loss function varies with number of iterations.

number of iterations is within 0-40, and the threshold of the loss function gradually stabilizes
after the number of iterations is higher than 40. As can be seen from the results, the results of the
ResNet34 model vary greatly with changes in the number of iterations (learning times). The best
results are as follows: the accuracy rate of the training set is 99.8%, the threshold of the loss
function is 0.009, the accuracy rate of the validation set is 97.30%, and the threshold of the loss
function is 0.79.

3.3. Superparameter optimization and prediction results

To further optimize the model, we optimized the batch size, momentum factor, number of
iterations, and learning rate for ResNet34. The parameter optimization settings were as follows:
batch size (10-100, step length: 1); momentum factor (0-0.9, step length: 0.1); learning rate
(0.0001, 0.001, 0.01, [0.1-0.7, step length 0.1]), and the maximum number of iterations was 200.
Gradual optimization was carried out for these four parameters. The optimization results are
shown in Fig. 10. Optimal results were obtained when the batch size was 10, the momentum
factor was 0.2, the learning rate was 0.6, the number of iterations was 126, and the accuracy of
the validation set was 97.72%.
Optimized parameters (batch size= 10, momentum factor = 0.2, learning rate= 0.6, and

number of iterations= 126) were used to construct the ResNet34 model. Figure 10 shows the
operation results. The weight parameters in the trained model were used to predict the samples
in the test set. Table 4 lists the results of the test set: the overall accuracy was 96.5%, and the
specificities of the nonprecancerous lesion, precancerous lesion, and GC groups were 96.0%,
97.3%, and 96.7%, respectively. The sensitivities were 97.0%, 96.3%, and 96.6%, respectively.

Table 4. Results of Resnet34 model for test set.

True value Predicted value
non-precancerous
lesions group

precancerous lesions
group gastric cancer group

non-precancerous lesions group 4070 80 90

precancerous lesions group 41 2724 35

gastric cancer group 59 28 2473

specificity/% 96.0 97.3 96.7

sensitivity/% 97.0 96.2 96.5
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Fig. 10. Model hyperparameter optimization results.

4. Discussion

The error bars shown in Fig. 3(D) represent the spectral differences of different spatial parts of
the gastric mucosa of the same individual. The spatial distribution of the constituents of the
fluorescent substance is not uniform, resulting in a large difference in the fluorescence intensity
between the pixels. In addition, the spatial difference in the spectral intensity varies with the
wavelength range. For example, nonprecancerous lesions have large spatial differences before
the 600 nm band, while spatial differences after 600 nm are small. There will be differences
between different types of tissues. In the range of error fluctuations, the fluorescence intensity of
normal tissues overlaps with the fluorescence intensity of other types of tissues (AG, IM, and
GC). Therefore, 496 nm as a spectral fingerprint of normal and disease, and 546 nm and 670 nm
as differential fingerprints of GC and nongastric cancer, respectively, are more likely to produce
misjudgments.
The error bars shown in Fig. 5(B) represent the differences between different individuals in

the same category. It can be seen from Fig. 5(B) that the second derivative spectrum is greatly
affected by individual differences, and the fluorescence intensity of each tissue type at 550 nm
and 580 nm overlaps more severely, indicating that the individual differences in these two bands
are larger. The fluorescence intensity of the tissue types at 466 nm and 546 nm also partially
overlap, and this may cause significant interference in the identification of nonprecancerous
lesions, precancerous lesions, and GC. Therefore, it is easy to misjudge GC and nongastric cancer
when only using the 466 nm and 546 nm values of the second derivative spectrum.

In summary, it is necessary to further use fluorescence spectroscopy imaging technology
combined with deep learning and the spatial-spectral combined classification method in modeling
diagnoses. This will allow for the extraction of more effective information for the nonprecancerous
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lesion group, precancerous lesion group, and GC group samples. Perform reliable and accurate
identification.

Because biological tissues are so complex, it is likely that many biomolecular components are
involved in countless biochemical processes that simultaneously affect disease. Deep learning
combined with the spectral-spatial classification method can be used for multiple pathological
classification and to make full use of “spatial+ spectral” information. In this experiment, the
accuracy of nonprecancerous lesions, precancerous lesions, and GC reached 96.5% by using this
method, indicating that deep learning combined with the spectral-spatial classification method is
effective and reliable for the early diagnosis of GC.

The accuracy rate is relatively high when using the deep learning method and as the result of
the difference in gray image information after spatiospectral preprocessing. The information
of the fluorescence component in different bands and the spatial difference information of the
fluorescence component at different pixel points was included in the image after spatiospectral
preprocessing. The difference information of “spatial+ spectral” for these grayscale images
could be automatically learned by using the deep learning method, and the advanced feature
representation was obtained. Finally, the accurate category information of each type of tissue
was output (including the nonprecancerous group, precancerous lesion group, and GC group).

Early GC diagnosis has always been a local and overseas research hotspot. As shown in
Table 5, new endoscopic techniques [chromoendoscopy (CE), narrow-band imaging (NBI), blue
laser imaging (BLI), and optical coherence tomography (OCT)], new tumor markers (mRNA),
spectral detection [infrared spectral (IR) and Raman spectrum (RS)], the identification of small
and high-risk nonneoplastic gastric lesions (e.g., AG and IM), and GC have made certain progress.
However, the accuracy of the endoscopic method mainly depends on the clinician’s experience.
The specificity and sensitivity of tumor markers have not reached the requirements of clinical
application. The infrared spectrum of water has a great influence on other substances, which
causes significant interference to some lesion information in the early stage of GC and is easily
covered up by the water absorption signal. Owing to the weakness of Raman scattering, a
large confocal Raman spectrometer is required to meet the measurement requirements in the
laboratory. In addition, chemical reagents such as special metal nanomaterials are needed
for surface-enhanced Raman spectroscopy analysis. Thus, Raman spectroscopy is difficult to
popularize and apply in clinical practice.

Table 5. Comparison of early diagnosis effect (accuracy, specificity, and sensitivity) of gastric
cancer based on different methods.

Sequence Number Detection method accuracy/% specificity/% sensitivity/%

1 Chromoendoscopy (CE) [43] 91.3 88.6 93.2

2 Narrow-band imaging (NBI) [44] 93.6 92.7 94.5

3 Blue laser imaging (BLI) [45] 92.1 93.8 91.6

4 Optical coherence imaging (OCT) [46] 90.7 91.7 88.2

5 mRNA(h19) [47] 82.8 85.5 80.1

6 Infrared spectral (IR) [48] 89.2 84.0 94.0

7 Raman spectrum (RS) [49] 92.0 95.0 78.0

8 Fluorescence hyperspectral imaging (FHSI) 96.5 97.3 96.2

According to the existing literature, here, we presented for the first time the application of FHSI
combined with a deep learning algorithm (ResNet34) and spectral-spatial classification method
as a sensitive and specific diagnostic tool for the early diagnosis of GC. A good classification
of nonprecancerous lesions, precancerous lesions, and GC was obtained. This indicates the
feasibility of using FHSI technology for the early diagnosis of GC. FHSI technology can
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simultaneously obtain the biochemical information and image spatial information of gastric
mucosa tissue, and has great clinical application potential.

Conclusions

The fluorescence spectrum characteristics of GC tissues are significantly different from those of
normal tissues. This may be caused by the abnormal metabolism of the pyridoxal phosphate
“Schiff” base concentration and hematoporphyrin IX concentration. In addition, the fluorescence
intensity of a GC group in the second-derivative spectrum was significantly lower than that of
the nonprecancerous and precancerous groups. This may be caused by the abnormal NADPH
metabolism in the GC tissues. These endogenous fluorescence substances can be used as spectral
biomarkers to distinguish nonprecancerous lesions, precancerous lesions, and GC. However,
owing to the great influence of the spatial distribution differences of tissue components, individual
differences, and instrument noise, the fluorescence spectra overlap is significant and is easy to
misjudge. The discrimination accuracy, specificity, and sensitivity of a deep learning model for
the nonprecancerous lesion group, precancerous lesion group, and GC group were all above 96%,
and the stability of the model was effectively improved by adjusting the superparameters through
experience.
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